Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 27 2018 21:08:20
%S 3,12,41,120,307,696,1241,1956,3307,5544,8381,12042,16237,21492,27677,
%T 33906,42733,54180,65057,76740,88771,104112,124229,146490,169933,
%U 196884,230807,263790,297475,339372,385349,441900,496375,557628,617357,672510,743917,807888
%N Sum of the next n members of the list of twin primes.
%C Observation: a(26) is also equal to A000521(1) = 196884. - _Omar E. Pol_, Nov 29 2014
%e a(1) = 3, a(2) = 5+7 = 12, a(3) = 11+13+17 = 41, ...
%e a(26) = 7211+7213+7307+7309+7331+7333+7349+7351+7457+7459+7487+7489+7547+7549+7559+ 7561+7589+7591+7757+7759+7877+7879+7949+7951+8009+8011 = 196884. - _Omar E. Pol_, Nov 29 2014
%t With[{nn=100},Total/@TakeList[Union[Flatten[Select[ Partition[Prime[ Range[ 300nn]],2,1],#[[2]]-#[[1]]==2&]]],Range[nn]]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Apr 27 2018 *)
%o (PARI) isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) ;
%o lista(nn) = {v = select(x->isA001097(x), vector(nn, i, i)); idep = 1; for (n=1, sqrtint(#v), print1(sum(i=idep, idep+n-1, v[i]), ", "); idep += n;);} \\ _Michel Marcus_, Nov 29 2014
%Y Cf. A001097 (twin primes), A007468 (sum of next n primes), A000521.
%K easy,nonn
%O 1,1
%A Den Roussel (DenRoussel(AT)webtv.net)
%E More terms from _Michel Marcus_, Nov 29 2014