login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*2^j.
0

%I #20 May 23 2024 04:25:43

%S 1,10,2,100,40,4,1000,600,120,8,10000,8000,2400,320,16,100000,100000,

%T 40000,8000,800,32,1000000,1200000,600000,160000,24000,1920,64,

%U 10000000,14000000,8400000,2800000,560000,67200,4480,128,100000000

%N Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*2^j.

%H B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match34/match34_109-121.pdf">Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons</a>, Match, No. 34 (Oct 1996), 109-121.

%F G.f.: 1/(1 - 10*x - 2*x*y). - _Stefano Spezia_, Apr 28 2024

%e From _Stefano Spezia_, Apr 28 2024: (Start)

%e Triangle begins:

%e 1;

%e 10, 2;

%e 100, 40, 4;

%e 1000, 600, 120, 8;

%e 10000, 8000, 2400, 320, 16;

%e 100000, 100000, 40000, 8000, 800, 32;

%e ...

%e (End)

%t Table[Binomial[i,j]*10^(i-j)*2^j,{i,0,7},{j,0,i}]//Flatten (* _Stefano Spezia_, Apr 28 2024 *)

%Y Cf. A000079 (right diagonal), A001021 (row sums), A011557 (1st column).

%K nonn,tabl,easy

%O 0,2

%A _N. J. A. Sloane_