login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A038271
Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*5^j.
1
1, 7, 5, 49, 70, 25, 343, 735, 525, 125, 2401, 6860, 7350, 3500, 625, 16807, 60025, 85750, 61250, 21875, 3125, 117649, 504210, 900375, 857500, 459375, 131250, 15625, 823543, 4117715, 8823675, 10504375, 7503125, 3215625, 765625, 78125
OFFSET
0,2
REFERENCES
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Gábor Kallós, A generalization of Pascal’s triangle using powers of base numbers, Annales mathématiques Blaise Pascal, 13 no. 1 (2006), p. 1-15.
EXAMPLE
Triangle begins:
1,
7, 5,
49, 70, 25,
343, 735, 525, 125,
2401, 6860, 7350, 3500, 625,
16807, 60025, 85750, 61250, 21875, 3125,
117649, 504210, 900375, 857500, 459375, 131250, 15625;
... - Vincenzo Librandi, Apr 22 2014
MATHEMATICA
Flatten[Table[Binomial[i, j]7^(i-j) 5^j, {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, Apr 20 2014 *)
CROSSREFS
Sequence in context: A202130 A089244 A063003 * A329008 A005692 A080798
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved