login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Top line of 4-wave sequence A038197, also bisection of A006357.
0

%I #24 Mar 12 2024 08:01:15

%S 1,4,30,246,2037,16886,139997,1160693,9623140,79784098,661478734,

%T 5484227157,45468956106,376976720745,3125460977225,25912757426660,

%U 214839027697334,1781200165693270,14767680082482085,122436758775876478

%N Top line of 4-wave sequence A038197, also bisection of A006357.

%H Floor van Lamoen, <a href="https://web.archive.org/web/20171113001512/http://home.wxs.nl/~lamoen/wiskunde/wave.htm">Wave sequences</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-15,7,-1).

%F Let v(4) = (1, 1, 1, 1), let M(4) be the 4 X 4 matrix m(i, j) = min(i, j); then a(n) = min(v(4)*M(4)^n). - _Benoit Cloitre_, Oct 03 2002

%F G.f.: ( 1-6*x+5*x^2-x^3 ) / ( (x-1)*(x^3-6*x^2+9*x-1) ). - _Wouter Meeussen_, Mar 19 2005

%o (PARI) k=4; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)

%Y Cf. A006357, A038197.

%K nonn,easy

%O 0,2

%A _Floor van Lamoen_