login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!/2)*Sum(1/k!, k=1..n-2).
4

%I #14 Jan 09 2021 17:53:50

%S 0,0,0,3,18,100,615,4326,34636,311760,3117645,34294150,411529866,

%T 5349888336,74898436795,1123476552030,17975624832600,305585622154336,

%U 5500541198778201,104510282776785990,2090205655535719990,43894318766250120000

%N a(n) = (n!/2)*Sum(1/k!, k=1..n-2).

%H G. A. Kamel, <a href="http://www.aascit.org/journal/archive2?journalId=928&amp;paperId=2310">Partial Chain Topologies on Finite Sets</a>, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.

%F a(n) = A038157(n) / 2. - _Sean A. Irvine_, Jan 09 2021

%o (PARI) a(n) = (n!/2)*sum(k=1, n-2, 1/k!); \\ _Michel Marcus_, Jan 30 2016

%Y Row sums of A268217.

%Y Cf. A038157.

%K nonn

%O 0,4

%A _N. J. A. Sloane_.