login
Beatty sequence for 2*Pi.
15

%I #25 Jul 07 2024 20:58:01

%S 0,6,12,18,25,31,37,43,50,56,62,69,75,81,87,94,100,106,113,119,125,

%T 131,138,144,150,157,163,169,175,182,188,194,201,207,213,219,226,232,

%U 238,245,251,257,263,270,276,282,289,295,301,307,314,320,326,333,339,345

%N Beatty sequence for 2*Pi.

%C a(n) = floor[circumference of a circle of radius n]; a(n) = floor(2*Pi*n). - _Mohammad K. Azarian_, Feb 29 2008

%C This sequence consists of the nonnegative integers k satisfying sin(k) <= 0 and sin(k+1) >= 0; thus this sequence and A246388 partition A022844 (the Beatty sequence for Pi). - _Clark Kimberling_, Aug 24 2014

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>.

%F a(n) = floor(n*2*Pi).

%t Table[Floor[2 n*Pi], {n, 0, 100}] (* or *)

%t Select[Range[0, 628], Sin[#] <= 0 && Sin[# + 1] >= 0 &] (* _Clark Kimberling_, Aug 24 2014 *)

%Y Complement of A108586.

%Y Cf. A022844, A140758, A108592, A246388.

%K nonn

%O 0,2

%A _Felice Russo_

%E More terms from _Mohammad K. Azarian_, Feb 29 2008