Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 31 2023 08:39:06
%S 0,2,5,7,10,13,15,18,21,23,26,29,31,34,37,39,42,45,47,50,53,55,58,61,
%T 63,66,69,71,74,77,79,82,85,87,90,93,95,98,101,103,106,109,111,114,
%U 117,119,122,125,127,130,133,135,138,141,143,146,149,151
%N A Beatty sequence: a(n) = floor(n*2^sqrt(2)).
%C 2^sqrt(2) is the Hilbert number (a.k.a. Gelfond-Schneider constant) (A007507).
%C Of course this is different from A047480.
%H G. C. Greubel, <a href="/A038127/b038127.txt">Table of n, a(n) for n = 0..10000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hilbert_number">Hilbert number</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%t Floor[2^Sqrt[2] Range[0,60]] (* _Harvey P. Dale_, Dec 03 2012 *)
%o (PARI) for(n=1,50, print1(floor(n*2^(sqrt(2))), ", ")) \\ _G. C. Greubel_, Mar 27 2018
%o (Magma) [Floor(n*2^(Sqrt(2))): n in [1..50]]; // _G. C. Greubel_, Mar 27 2018
%K nonn
%O 0,2
%A _Felice Russo_