

A038097


Number of rooted connected graphs on n labeled nodes where the root has degree 3.


4



32, 1120, 53760, 4155200, 550305280, 129990260736, 56369709634560, 45808126727193600, 70779622448719134720, 210103333009795315650560, 1207180278201294640467288064, 13500153139563947729371140096000, 295095590701444457972767937903329280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

4,1


LINKS



FORMULA

E.g.f.: B(x)/C(x) where B, C respectively are the e.g.f.'s for A038096 and A006125.


EXAMPLE

For n=4, take 4 nodes labeled a,b,c,d. We can choose the root in 4 ways, say a, and it must be joined to b,c,d. Each of the three edges bc, bd, cd may or may not exist, so there are 4*8 = 32 = a(4) possibilities.


PROG

(PARI) seq(n)={Vec(serlaplace(sum(k=1, n, k*binomial(k1, 3)*2^binomial(k1, 2)*x^k/k!)/sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)))} \\ Andrew Howroyd, Nov 23 2020


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



