Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #61 Oct 19 2024 08:32:33
%S 1,1,5,429,9694845,14544636039226909,
%T 94295850558771979787935384946380125,
%U 11311095732253345760960290897769189975961199415637572612957718759342193629
%N Odd Catalan numbers: a(n) = A000108(2^n-1).
%C The next term has 150 digits. - _Harvey P. Dale_, Feb 22 2016
%H David Wasserman, May 07 2007, <a href="/A038003/b038003.txt">Table of n, a(n) for n = 0..9</a>
%H H-Y. Lin, <a href="http://www.emis.de/journals/INTEGERS/papers/l55/l55.Abstract.html">Odd Catalan Numbers modulo 2^k</a>, Integers 11 (2011) #A55
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a>
%F a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).
%F a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - _Benoit Cloitre_, Aug 17 2002
%F a(n) = A000108(2^n-1). - _David Wasserman_, May 07 2007
%t Select[CatalanNumber[Range[0,300]],OddQ] (* _Harvey P. Dale_, Feb 22 2016 *)
%o (Python)
%o from __future__ import division
%o A038003_list, c, s = [1, 1], 1, 3
%o for n in range(2,10**5+1):
%o ....c = (c*(4*n-2))//(n+1)
%o ....if n == s:
%o ........A038003_list.append(c)
%o ........s = 2*s+1 # _Chai Wah Wu_, Feb 12 2015
%o (PARI) a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ _Joerg Arndt_, Nov 05 2015
%o (Magma) [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // _Vincenzo Librandi_, Nov 01 2016
%Y Cf. A000108, A094389, A119861, A119908, A120274, A120275.
%Y Intersection of A001790 and A098597. - _Dimitri Papadopoulos_, Oct 28 2016
%K nonn
%O 0,3
%A _Christian G. Bower_