login
Number of i such that d(i) > d(i-1), where Sum_{i=0..m} d(i)*8^i is the base-8 representation of n.
2

%I #16 Jan 01 2024 08:03:19

%S 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,

%T 1,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,

%U 1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1

%N Number of i such that d(i) > d(i-1), where Sum_{i=0..m} d(i)*8^i is the base-8 representation of n.

%e 136 is written as 210 in base 8, and we have 2 inequalities 2>1 and 1>0, so a(136) = 2.

%p A037823 := proc(n)

%p a := 0 ;

%p dgs := convert(n,base,8);

%p for i from 2 to nops(dgs) do

%p if op(i,dgs)>op(i-1,dgs) then

%p a := a+1 ;

%p end if;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Oct 16 2015

%Y Cf. A037806.

%K nonn,base

%O 1,136

%A _Clark Kimberling_

%E Sign in name corrected by _R. J. Mathar_, Oct 16 2015