login
Number of i such that d(i) < d(i-1), where Sum_{i=0..m} d(i)*8^i is the base-8 representation of n.
2

%I #17 Jul 23 2023 15:45:21

%S 0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,

%T 0,0,1,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,

%U 1,1,1,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1

%N Number of i such that d(i) < d(i-1), where Sum_{i=0..m} d(i)*8^i is the base-8 representation of n.

%H Robert Israel, <a href="/A037806/b037806.txt">Table of n, a(n) for n = 1..10000</a>

%F For 0 <= j <= 7, a(8*i+j) = a(i) + 1 if (i mod 8) < j, a(i) otherwise. - _Robert Israel_, May 17 2019

%p A037806 := proc(n)

%p a := 0 ;

%p dgs := convert(n,base,8);

%p for i from 2 to nops(dgs) do

%p if op(i,dgs)<op(i-1,dgs) then

%p a := a+1 ;

%p end if;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Oct 16 2015

%Y Cf. A037823.

%K nonn,base

%O 1,83

%A _Clark Kimberling_

%E Sign in name corrected by _R. J. Mathar_, Oct 16 2015