Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Dec 14 2023 05:39:19
%S 1,12,123,1231,12312,123123,1231231,12312312,123123123,1231231231,
%T 12312312312,123123123123,1231231231231,12312312312312,
%U 123123123123123,1231231231231231,12312312312312312,123123123123123123,1231231231231231231,12312312312312312312
%N Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3.
%C Periodic sequences of this type can be easily calculated by a(n) = floor(q*10^n/(10^m-1)), where q is the number representing the periodic digit pattern (=123 for this sequence) and m is the period length. - _Hieronymus Fischer_ Jan 03 2013
%H Hieronymus Fischer, <a href="/A037610/b037610.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,0,1,-10).
%F a(n) = floor((41/333)*10^n). - _Hieronymus Fischer_, Jan 03 2013
%F From _Colin Barker_, Apr 30 2014: (Start)
%F a(n) = 10*a(n-1) + a(n-3) - 10*a(n-4).
%F G.f.: x*(3*x^2 + 2*x + 1) / ((x - 1)*(10*x - 1)*(x^2 + x + 1)). (End)
%F a(n) = (41*10^n - 27*n - 50 + 90*floor(n/3) - 9*floor((n - 1)/3))/333. - _Bruno Berselli_, Sep 13 2018
%p A037610:=n->floor((41/333)*10^n); seq(A037610(n), n=1..20); # _Wesley Ivan Hurt_, Apr 19 2014
%t a[n_] := Floor[41/333*10^n]; Array[a, 19] (* _Robert G. Wilson v_, Apr 18 2014 *)
%t Table[FromDigits[PadRight[{},n,{1,2,3}]],{n,20}] (* or *) LinearRecurrence[ {10,0,1,-10},{1,12,123,1231},20] (* _Harvey P. Dale_, May 09 2014 *)
%o (PARI) A037610(n)=10^n*41\333 \\ _M. F. Hasler_, Jan 13 2013
%o (PARI) Vec(x*(3*x^2+2*x+1)/((x-1)*(10*x-1)*(x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Apr 30 2014
%o (Magma) [(41*10^n-27*n-50+90*Floor(n/3)-9*Floor((n-1)/3))/333: n in [1..30]]; // _Bruno Berselli_, Sep 13 2018
%K nonn,base,easy
%O 1,2
%A _Clark Kimberling_