login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
1

%I #26 Jan 15 2023 09:52:47

%S 1,10,71,500,3501,24510,171571,1201000,8407001,58849010,411943071,

%T 2883601500,20185210501,141296473510,989075314571,6923527202000,

%U 48464690414001,339252832898010,2374769830286071,16623388812002500,116363721684017501,814546051788122510

%N Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.

%H Vincenzo Librandi, <a href="/A037579/b037579.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,1,-7).

%F a(n) = (5*7^n-3*(-1)^(n-1)-8)/24. a(n) = 7*a(n-1)+a(n-2)-7*a(n-3). G.f.: x*(3*x+1) / ((x-1)*(x+1)*(7*x-1)). - _Colin Barker_, Dec 27 2012; corrected Apr 30 2014

%p A037579:=n->(5*7^n-3*(-1)^(n-1)-8)/24; seq(A037579(n), n=1..30); # _Wesley Ivan Hurt_, Apr 29 2014

%t CoefficientList[Series[(3 x + 1)/((x - 1) (x + 1) (7 x - 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 22 2013 *)

%t Table[FromDigits[PadRight[{},n,{1,3}],7],{n,30}] (* or *) LinearRecurrence[ {7,1,-7},{1,10,71},30] (* _Harvey P. Dale_, Dec 29 2019 *)

%o (Magma) [(5*7^n-3*(-1)^(n-1)-8)/24: n in [1..30]]; // _Vincenzo Librandi_, Oct 22 2013

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_, Dec 11 1999

%E More terms from _Colin Barker_, Dec 27 2012