login
Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
0

%I #11 Jul 05 2022 13:19:18

%S 1,7,35,176,882,4410,22051,110257,551285,2756426,13782132,68910660,

%T 344553301,1722766507,8613832535,43069162676,215345813382,

%U 1076729066910,5383645334551,26918226672757,134591133363785,672955666818926

%N Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.

%H <a href="/index/Ar#5-automatic">Index entries for 5-automatic sequences</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,1,-5).

%F G.f.: x*(1+2*x) / ( (x-1)*(5*x-1)*(1+x+x^2) ). - _R. J. Mathar_, Apr 27 2015

%F A007092(a(n)) = A037511(n).

%t Table[FromDigits[PadRight[{},n,{1,2,0}],5],{n,30}] (* or *) LinearRecurrence[{5,0,1,-5},{1,7,35,176},30] (* _Harvey P. Dale_, Jul 05 2022 *)

%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -5,1,0,5]^(n-1)*[1;7;35;176])[1,1] \\ _Charles R Greathouse IV_, Feb 13 2017

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_