login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
0

%I #11 Jul 05 2022 13:19:18

%S 1,7,35,176,882,4410,22051,110257,551285,2756426,13782132,68910660,

%T 344553301,1722766507,8613832535,43069162676,215345813382,

%U 1076729066910,5383645334551,26918226672757,134591133363785,672955666818926

%N Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.

%H <a href="/index/Ar#5-automatic">Index entries for 5-automatic sequences</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,1,-5).

%F G.f.: x*(1+2*x) / ( (x-1)*(5*x-1)*(1+x+x^2) ). - _R. J. Mathar_, Apr 27 2015

%F A007092(a(n)) = A037511(n).

%t Table[FromDigits[PadRight[{},n,{1,2,0}],5],{n,30}] (* or *) LinearRecurrence[{5,0,1,-5},{1,7,35,176},30] (* _Harvey P. Dale_, Jul 05 2022 *)

%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -5,1,0,5]^(n-1)*[1;7;35;176])[1,1] \\ _Charles R Greathouse IV_, Feb 13 2017

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_