The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037237 Expansion of (3 + x^2) / (1 - x)^4. 3
 3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, 1651, 2044, 2495, 3008, 3587, 4236, 4959, 5760, 6643, 7612, 8671, 9824, 11075, 12428, 13887, 15456, 17139, 18940, 20863, 22912, 25091, 27404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This sequence is the partial sums of A058331. - J. M. Bergot, May 31 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1) FORMULA a(n) = Sum_{k=0..n} (2*(k+1)^2 + 1). - Mike Warburton, Jul 07 2007, Sep 07 2007 a(n) = (n+1)*(2*n^2 + 7*n + 9)/3. - R. J. Mathar, Mar 29 2010 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 21 2012 E.g.f.: (1/3)*(9 + 27*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Jul 22 2017 MATHEMATICA CoefficientList[Series[(3+x^2)/(1-x)^4, {x, 0, 50}], x]  (* Harvey P. Dale, Mar 06 2011 *) LinearRecurrence[{4, -6, 4, -1}, {3, 12, 31, 64}, 40] (* Vincenzo Librandi Jun 21 2012 *) PROG (MAGMA) I:=[3, 12, 31, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)- Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 21 2012 (PARI) x='x+O('x^50); Vec((3+x^2)/(1-x)^4) \\ G. C. Greubel, Jul 22 2017 CROSSREFS Sequence in context: A131936 A009135 A131740 * A005718 A199231 A098500 Adjacent sequences:  A037234 A037235 A037236 * A037238 A037239 A037240 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:23 EST 2021. Contains 349563 sequences. (Running on oeis4.)