login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037164
Numerators of coefficients of Eisenstein series E_12(q) (or E_6(q) or E_24(q)).
2
1, 65520, 134250480, 11606736960, 274945048560, 3199218815520, 23782204031040, 129554448266880, 563087459516400, 2056098632318640, 6555199353000480, 18693620658498240, 48705965462306880, 117422349017369760, 265457064498837120, 566735214731736960, 1153203117089652720
OFFSET
0,2
COMMENTS
First denominator is 1, rest are 691.
REFERENCES
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
LINKS
MAPLE
with(numtheory):
E := proc(k) local n, t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..60); series(t1, q, 60); end; E(12);
seq(numer(coeff(%, q, n)), n=0..24);
MATHEMATICA
terms = 13; E12[x_] = 1 - (24/BernoulliB[12])*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}]; E12[x] + O[x]^terms // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Feb 27 2018 *)
PROG
(Sage)
l = list(eisenstein_series_qexp(12, 20, normalization='integral'))
l[0] = 1; l # Andy Huchala, Jul 01 2021
CROSSREFS
Cf. A029828.
Sequence in context: A083608 A102277 A013692 * A288990 A075964 A075969
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved