login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).
5

%I #10 Mar 31 2012 14:02:29

%S 0,12,120,57120,93321840,10431955353116229600,

%T 8557304989566294213168677685339060480,

%U 102743047168201563425402150421568484707810385382513037790885688657488312400960

%N Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).

%C Conjecture: For n>=3, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x + 1) ^ A000225(n-1) (= A051179(n-2)). If this holds, then for n>=3, a(n) = A048720bi(A136386(n),A048723bi(3,A000225(n-1))) = A048720bi(A136386(n),A051179(n-2)).

%D S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.

%H A. Karttunen, <a href="/A037097/b037097.txt">Table of n, a(n) for n = 2..12</a>

%H A. Karttunen, <a href="/A036284/a036284.c.txt">C program for computing this sequence</a>

%H S. Wolfram, <a href="http://www.wolframscience.com/nksonline/page-119">A New Kind of Science, Wolfram Media Inc., (2002), p. 119.</a>

%F a(n) = Sum_{k=0..A000225(n-1)} ([A000244(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function.

%e When powers of 3 are written in binary (see A004656), under each other as:

%e 000000000001 (1)

%e 000000000011 (3)

%e 000000001001 (9)

%e 000000011011 (27)

%e 000001010001 (81)

%e 000011110011 (243)

%e 001011011001 (729)

%e 100010001011 (2187)

%e it can be seen that, starting from the column 2 from the right, the bits in the n-th column can be arranged in periods of 2^(n-1): 4, 8, ... This sequence is formed from those bits: 0011, reversed is 11100, which is binary for 12, thus a(3) = 12, 00011110, reversed is 011110000, which is binary for 120, thus a(4) = 120.

%p a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n-1))-1);

%p bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

%Y a(n) = floor(A037096(n)/(2^(2^(n-1)))). See also A036284, A136386.

%K nonn,base

%O 2,2

%A _Antti Karttunen_, Jan 29 1999. Entry revised Dec 29 2007.