login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime containing exactly n 8's.
15

%I #16 Feb 23 2016 10:33:32

%S 2,83,881,8887,88883,888887,28888883,88888883,888888883,48888888883,

%T 288888888889,888888888887,48888888888883,88888888888889,

%U 888888888888883,18888888888888883,88888888888888889,2888888888888888887,8888888888888888881,388888888888888888889

%N Smallest prime containing exactly n 8's.

%C The last digit of n cannot be 8, therefore a(n) must have at least n+1 digits. It is probable (using [] for floor) that none among [10^n/9]*80 + {1,3,7,9} is prime in which case a(n) must have n+2 digits. We conjecture that for all n >= 0, a(n) equals [10^(n+1)/9]*80 + b with 1 <= b <= 9 and one of the (first) digits 8 replaced by a digit among {0, ..., 7}. - _M. F. Hasler_, Feb 22 2016

%H M. F. Hasler, <a href="/A037069/b037069.txt">Table of n, a(n) for n = 0..200</a>

%t f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 8], {n, 1, 18}]

%o (PARI) A037069(n)={my(p, t=10^(n+1)\9*80); forvec(v=[[-1, n], [-8, -1]], nextprime(p=t+10^(n-v[1])*v[2])-p<10 && return(nextprime(p)))} \\ ~

%Y Cf. A065591, A037068, A034388, A036507-A036536.

%Y Cf. A037053, A037055, A037057, A037059, A037061, A037063, A037065, A037067, A037071.

%K nonn,base,easy

%O 0,1

%A _Patrick De Geest_, Jan 04 1999

%E Corrected by _Jud McCranie_, Jan 04 2001

%E More terms from _Erich Friedman_, Jun 03 2001

%E More terms and a(0) = 2 from _M. F. Hasler_, Feb 22 2016