login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime containing exactly n 7's.
18

%I #20 Jul 14 2016 00:18:18

%S 2,7,277,1777,47777,727777,7477777,77767777,577777777,1777777777,

%T 67777777777,377777777777,7177777777777,17777777777777,

%U 577777777777777,2777777777777777,77777767777777777,377777777777777777,2777777777777777777,71777777777777777777

%N Smallest prime containing exactly n 7's.

%C We conjecture that for all n >= 2, a(n) equals floor(10^(n+1)/9)*7 with one of the (first) digits 7 replaced by a digit among {0, ..., 6}. - _M. F. Hasler_, Feb 22 2016

%C The conjecture is false: a(668) = 7*(10^669-1)/9 + 10^276. - _Robert Israel_, Jul 13 2016

%H M. F. Hasler and Robert Israel, <a href="/A037067/b037067.txt">Table of n, a(n) for n = 0..998</a> (n = 0..200 from M. F. Hasler)

%p F:= proc(n) local x0,i,j;

%p x0:= 7/9*(10^(n+1)-1);

%p for j from 1 to 6 do

%p if isprime(x0 + (j-7)*10^n) then

%p return x0 + (j-7)*10^n fi od;

%p for i from n-1 to 0 by -1 do

%p for j from 0 to 6 do

%p if isprime(x0 + (j-7)*10^i) then

%p return x0 + (j-7)*10^i fi od od;

%p for i from 0 to n do

%p for j from 8 to 9 do

%p if isprime(x0 + (j-7)*10^i) then

%p return x0 + (j-7)*10^i fi

%p od od:

%p end proc:

%p F(0):= 2: F(1):= 7:

%p map(F, [$0..100]); # _Robert Israel_, Jul 13 2016

%t f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 7], {n, 1, 18}]

%o (PARI) A037067(n)={my(t=10^(n+1)\9*7); forvec(v=[[-1, n], [-7, -1]], ispseudoprime(p=t+10^(n-v[1])*v[2]) && return(p)); error} \\ _M. F. Hasler_, Feb 22 2016

%Y Cf. A065590, A065581, A037066, A034388, A036507-A036536.

%Y Cf. A037053, A037055, A037057, A037059, A037061, A037063, A037065, A037069, A037071.

%K nonn,base

%O 0,1

%A _Patrick De Geest_, Jan 04 1999

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003

%E More terms from and a(0) = 2 prepended by _M. F. Hasler_, Feb 22 2016