login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 8; a(n) = least k with d(k) = a(n-1), where d(k) is the number of divisors of k.
1

%I #17 Sep 13 2023 08:28:16

%S 8,24,360,3603600,2549066103582535692163008000000

%N a(1) = 8; a(n) = least k with d(k) = a(n-1), where d(k) is the number of divisors of k.

%C Unless a(5) is an "exceptional" (or "extraordinary") number (see A072066), a(6) = 2^30 * 3^28 * 5^22 * 7^18 * 11^16 * 13^16 * 17^12 * 19^12 * 23^10 * 29^10 * 31^10 * 37^10 * 41^6 * 43^6 * 47^6 * 53^6 * 59^4 * 61^4 * 67^4 * 71^4 * 73^4 * 79^4 * 83^2 * 89^2 * 97^2 * 101^2 * 103^2 * 107^2 * 109^2 * 113^2 * 127^2 * 131^2 * 137 * 139 * 149 * 151 * 157 * 163 * 167 * 173 * 179 * 181 * 191 * 193 = 1.77955...*10^327 (a 328-digit number). - _Jon E. Schoenfield_, Sep 07 2023

%o (PARI) lista(nn) = {a=8; print1(a, ", "); for (n=2, nn, k=1; while(numdiv(k) != a, k++); print1(k, ", "); a = k;);} \\ _Michel Marcus_, Feb 17 2015

%Y Cf. A000005, A009287.

%K nonn,nice

%O 1,1

%A _Donald S. McDonald_

%E One more term from _Naohiro Nomoto_, Jun 28 2001