login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036996
Number of isomers of alkyl homologs of adamantane with n carbon atoms.
1
1, 2, 11, 49, 217, 858, 3314, 11995, 41921, 141163, 462674, 1480017, 4644331, 14332801, 43628996, 131248423, 390921934, 1154427742, 3384244322, 9858374939, 28560865688, 82351168539, 236465407302, 676536049902, 1929455222816
OFFSET
0,2
REFERENCES
M. Yu. Kornilov, Number of structural isomers in the adamantane series, J. Structural Chem. 16 (3) (1975), 466-468.
LINKS
FORMULA
Reference gives a g.f.
MAPLE
A:= proc(n) option remember; unapply(`if`(n=0, 1, convert(series(1+ x/6 *(A(n-1)(x)^3 +3*A(n-1)(x) *A(n-1)(x^2) +2*A(n-1)(x^3)), x, n+1), polynom)), x) end: f:= (n, m)-> A(n)(x^m): gf:= n-> (f(n, 1)^16 +3*f(n, 2)^8 +8*f(n, 1) *f(n, 3)^5 +6*f(n, 1)^4 *f(n, 2)^6 +6*f(n, 4)^4)/24: a:= n-> coeff(gf(n), x, n): seq(a(n), n=0..35); # Alois P. Heinz, Jul 29 2009
MATHEMATICA
A[0] = 1&; A[n_][x_] := A[n][x] = Normal[Series[1+y/6*(A[n-1][y]^3+3*A[n-1][y]*A[n-1][y^2]+2*A[n-1][y^3]), {y, 0, n+1}]] /. y -> x; f[n_, m_] := A[n][x^m]; gf[n_] := (f[n, 1]^16+3*f[n, 2]^8+8*f[n, 1]*f[n, 3]^5+6*f[n, 1]^4*f[n, 2]^6+6*f[n, 4]^4)/24; a[n_] := Coefficient[gf[n], x, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 13 2014, after Alois P. Heinz's Maple code *)
CROSSREFS
Cf. A000598. - Alois P. Heinz, Jul 29 2009
Sequence in context: A139475 A034568 A265610 * A262296 A151314 A316263
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jul 29 2009
STATUS
approved