The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036988 Has simplest possible tree complexity of all transcendental sequences. 5
 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity, 12 (1996), 187-198. FORMULA a(n) = 1 iff, in the binary expansion of n, reading from right to left, the number of 1's never exceeds the number of 0's. a(n) = A063524(A036989(n)). - Reinhard Zumkeller, Jul 31 2013 MATHEMATICA (* b = A036989 *) b[0] = 1; b[n_?EvenQ] := b[n] = Max[b[n/2] - 1, 1]; b[n_] := b[n] = b[(n-1)/2] + 1; a[n_] := Boole[b[n] == 1]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 05 2013, after Reinhard Zumkeller *) PROG (Haskell) a036988 = a063524 . a036989  -- Reinhard Zumkeller, Jul 31 2013 CROSSREFS Cf. A036989. Characteristic function of A036990. Sequence in context: A284957 A316533 A085405 * A108357 A309848 A326822 Adjacent sequences:  A036985 A036986 A036987 * A036989 A036990 A036991 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 23:51 EST 2022. Contains 350410 sequences. (Running on oeis4.)