login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).
15

%I #43 Apr 13 2023 09:25:26

%S 2,6,12,18,30,42,60,66,90,120,126,150,210,240,270,330,420,462,510,630,

%T 660,690,840,870,1050,1260,1320,1470,1680,1890,2310,2730,2940,3150,

%U 3570,3990,4620,4830,5460,5610,5670,6090,6930,7140,7350,8190,9240,9660

%N Sparsely totient numbers; numbers n such that m > n implies phi(m) > phi(n).

%C The paper by Masser and Shiu lists 150 terms of this sequence less than 10^6. For odd prime p, they show that p# and p*p# are in this sequence, where p# denotes the primorial (A002110). - _T. D. Noe_, Jun 14 2006

%C Conjecture: Except for 2 and 18, all terms are Zumkeller numbers (A083207). Verified for the first 1800 terms. - _Ivan N. Ianakiev_, Sep 04 2022

%H T. D. Noe, <a href="/A036913/b036913.txt">Table of n, a(n) for n = 1..5000</a>

%H Roger C. Baker and Glyn Harman, <a href="http://www.numdam.org/item?id=AFST_1996_6_5_2_183_0">Sparsely totient numbers</a>, Annales de la Faculté des Sciences de Toulouse Ser. 6, 5 no. 2 (1996), 183-190.

%H Glyn Harman, <a href="https://doi.org/10.1017/S0017089500008417">On sparsely totient numbers</a>, Glasgow Math. J. 33 (1991), 349-358.

%H D. W. Masser and P. Shiu, <a href="https://projecteuclid.org/download/pdf_1/euclid.pjm/1102702441">On sparsely totient numbers</a>, Pacific J. Math. 121, no. 2 (1986), 407-426.

%H Michael De Vlieger, <a href="/A036913/a036913.txt">Largest k such that A002110(k) | a(n) and A287352(a(n))</a>.

%H Michael De Vlieger, <a href="/A036913/a036913_1.txt">First term m > prime(n)^2 in A036913 such that gcd(prime(n), m) = 1</a>.

%e This sequence contains 60 because of all the numbers whose totient is <=16, 60 is the largest such number. [From _Graeme McRae_, Feb 12 2009]

%e From _Michael De Vlieger_, Jun 25 2017: (Start)

%e Positions of primorials A002110(k) in a(n):

%e n k a(n) = A002110(k)

%e ----------------------------------

%e 1 1 2

%e 2 2 6

%e 5 3 30

%e 13 4 210

%e 31 5 2310

%e 69 6 30030

%e 136 7 510510

%e 231 8 9699690

%e 374 9 223092870

%e 578 10 6469693230

%e 836 11 200560490130

%e 1169 12 7420738134810

%e 1591 13 304250263527210

%e 2149 14 13082761331670030

%e 2831 15 614889782588491410

%e 3667 16 32589158477190044730

%e 4661 17 1922760350154212639070

%e (End)

%t nn=10000; lastN=Table[0,{nn}]; Do[e=EulerPhi[n]; If[e<=nn, lastN[[e]]=n], {n,10nn}]; mx=0; lst={}; Do[If[lastN[[i]]>mx, mx=lastN[[i]]; AppendTo[lst,mx]], {i,Length[lastN]}]; lst (* _T. D. Noe_, Jun 14 2006 *)

%Y Cf. A097942 (highly totient numbers). Records in A006511 (see also A132154).

%K nonn

%O 1,1

%A _David W. Wilson_