login
A036892
Number of partitions of 5n such that cn(1,5) = cn(4,5) < cn(0,5) = cn(2,5) = cn(3,5).
7
0, 1, 3, 7, 14, 30, 62, 133, 275, 562, 1109, 2145, 4035, 7457, 13509, 24115, 42405, 73667, 126420, 214681, 360778, 600625, 990756, 1620449, 2628504, 4230770, 6758916, 10721739, 16892541, 26443435, 41137558, 63618639, 97825383, 149605621, 227593695
OFFSET
1,3
COMMENTS
Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) < cn(0,5) = cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A036891(n) - A036895(n)
a(n) = A036890(n) - A036894(n)
a(n) = A036889(n) - A046776(n)
CROSSREFS
Sequence in context: A305777 A139817 A173010 * A123707 A011947 A129629
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 11 2011
STATUS
approved