login
Number of partitions of 5n such that cn(0,5) = cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).
7

%I #10 Mar 30 2012 17:26:42

%S 1,3,6,13,27,61,132,285,590,1190,2325,4441,8288,15197,27394,48679,

%T 85332,147790,253016,428602,718696,1193779,1964996,3206966,5191350,

%U 8339001,13296592,21053380,33112242,51746168,80372146,124104612,190557592

%N Number of partitions of 5n such that cn(0,5) = cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).

%C Alternatively, number of partitions of 5n such that cn(0,5) = cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>

%F a(n) = A036884(n) - A046776(n)

%F a(n) = A036885(n) - A036894(n)

%F a(n) = A036883(n) - A036893(n)

%K nonn

%O 1,2

%A _Olivier GĂ©rard_

%E Terms a(10) onward from _Max Alekseyev_, Dec 10 2011