Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 24 2023 05:45:57
%S 1,2,9,8,625,18,117649,128,6561,1250,25937424601,72,23298085122481,
%T 235298,5625,32768,48661191875666868481,13122,
%U 104127350297911241532841,5000,1058841,51874849202,907846434775996175406740561329,1152
%N If n = (p_1)^(m_1)...(p_k)^(m_k) then a(n) = (p_1)^((p_1)^(m_1) - 1)...(p_k)((p_k)^(m_k) - 1).
%C These integers are refactorable: the number of divisors divides the number itself.
%H Amiram Eldar, <a href="/A036879/b036879.txt">Table of n, a(n) for n = 1..388</a>
%H Simon Colton, <a href="http://www.cs.uwaterloo.ca/journals/JIS/colton/joisol.html">Refactorable Numbers - A Machine Invention</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
%H Simon Colton, <a href="http://web.archive.org/web/20070831060523/http://www.dai.ed.ac.uk/homes/simonco/research/hr/">HR - Automatic Theory Formation in Pure Mathematics</a>. [Wayback Machine copy]
%F (p_1)^(m_1)...(p_k)^(m_k) -> (p_1)^((p_1)^(m_1) - 1)...(p_k)((p_k)^(m_k) - 1).
%e a(6) = 18 because 6 = 2^(1)3^(1) -> 2^(2^(1) - 1)3^(3^(1) - 1) = 18.
%t f[p_, e_] := p^(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* _Amiram Eldar_, Sep 24 2023 *)
%o (PARI) a(n) = my(f = factor(n)); for (i=1, #f~, f[i,2] = f[i,1]^f[i,2] - 1); factorback(f); \\ _Michel Marcus_, Dec 08 2014
%Y Cf. A033950.
%K nonn,mult
%O 1,2
%A Simon Colton (simonco(AT)cs.york.ac.uk)