login
Number of partitions of n such that cn(3,5) <= cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5).
0

%I #10 Dec 01 2013 23:29:37

%S 0,0,0,0,0,1,0,0,0,0,2,1,0,0,0,3,2,2,0,0,5,5,6,2,0,10,9,17,6,3,23,19,

%T 40,17,10,56,37,86,42,31,126,82,174,96,81,271,172,347,202,196,553,365,

%U 671,417,435,1091,747,1287,825,924,2083,1502,2435,1604,1868,3903,2927,4556,3054,3663,7159,5603,8407,5733

%N Number of partitions of n such that cn(3,5) <= cn(0,5) = cn(1,5) < cn(2,5) = cn(4,5).

%C Also, number of partitions of n such that cn(3,5) <= cn(2,5) = cn(4,5) < cn(0,5) = cn(1,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="http://oeis.org/wiki/Partitions_with_restricted_parts_modulo_5">Partitions with restricted parts modulo 5</a>

%K nonn

%O 1,11

%A _Olivier GĂ©rard_

%E Edited and extended by _Max Alekseyev_, Dec 01 2013