

A036849


Number of partitions of n such that cn(1,5) <= cn(0,5) = cn(2,5) <= cn(3,5) = cn(4,5).


0



0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 1, 0, 3, 0, 6, 5, 2, 5, 0, 15, 15, 6, 10, 3, 30, 36, 17, 23, 10, 59, 78, 40, 53, 31, 112, 156, 86, 120, 79, 218, 302, 174, 254, 186, 427, 576, 343, 517, 397, 835, 1087, 662, 1015, 816, 1615, 2036, 1260, 1942, 1601, 3073, 3770, 2372, 3636, 3061, 5737, 6907, 4413, 6698
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

Also, number of partitions of n such that cn(1,5) <= cn(3,5) = cn(4,5) <= cn(0,5) = cn(2,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.


LINKS

Table of n, a(n) for n=1..72.
Partitions with restricted parts modulo 5


CROSSREFS

Sequence in context: A133696 A195050 A127371 * A097364 A254204 A321361
Adjacent sequences: A036846 A036847 A036848 * A036850 A036851 A036852


KEYWORD

nonn


AUTHOR

Olivier Gérard


EXTENSIONS

Edited and extended by Max Alekseyev, Dec 01 2013


STATUS

approved



