login
Schoenheim bound L_1(n,4,3).
6

%I #17 Mar 07 2023 10:35:30

%S 1,4,6,11,14,25,30,47,57,78,91,124,140,183,207,257,285,352,385,466,

%T 510,600,650,763,819,950,1020,1163,1240,1411,1496,1689,1791,1998,2109,

%U 2350,2470,2737,2877,3161,3311,3634,3795,4148,4332,4704,4900,5317,5525,5976

%N Schoenheim bound L_1(n,4,3).

%D W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

%H <a href="/index/Cor#covnum">Index entries for covering numbers</a>

%p L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,4,3,1).

%t L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];

%t T[n_, k_] := L[n + 2, k + 2, k + 1, 1];

%t a[n_] := T[n - 2, 2];

%t Table[a[n], {n, 4, 49}] (* _Jean-François Alcover_, Mar 07 2023, after Maple code *)

%Y Lower bound to A011979. Cf. A011975.

%Y A column of A036838.

%K nonn

%O 4,2

%A _N. J. A. Sloane_, Jan 11 2002