login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2.
2

%I #21 Nov 14 2019 05:29:46

%S 1,8,12,16,32,28,40,40,48,68,56,72,68,88,88,84,112,112,112,116,112,

%T 144,140,144,144,168,164,160,184,172,200,192,188,208,224,224,228,224,

%U 248,236,264,248,264,276,264,288,276,304,304,312

%N Number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2.

%C Number of integer Cartesian grid points covered by a ring around the origin with width 1 and outer radius n + 1/2. - _Ralf Stephan_, Nov 28 2013

%H <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a>

%t a[n_] := If[n==0, 1, inf = (n-1/2)^2; sup = (n+1/2)^2; 4 Sum[Boole[inf < x^2 + y^2 < sup], {x, 0, n}, {y, 1, n}]];

%t a /@ Range[0, 49] (* _Jean-François Alcover_, Nov 14 2019 *)

%o (PARI) a(n)=sum(i=-n, n, sum(j=-n, n, d=sqrt(i*i+j*j); if(d>=n-1/2&&d<=n+1/2, 1))) \\ _Ralf Stephan_, Nov 28 2013

%Y Cf. A047077, A232705.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E Edited by _Ralf Stephan_, Nov 28 2013