login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(n, n), array T given by A047858.
1

%I #11 Jul 21 2024 12:25:10

%S 1,3,11,34,93,236,571,1338,3065,6904,15351,33782,73717,159732,344051,

%T 737266,1572849,3342320,7077871,14942190,31457261,66060268,138412011,

%U 289406954,603979753,1258291176,2617245671,5435817958,11274289125,23353884644,48318382051

%N a(n) = T(n, n), array T given by A047858.

%H Colin Barker, <a href="/A036542/b036542.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4).

%F a(n) = 3*n * 2^(n-1) - n + 1.

%F From _Colin Barker_, Feb 20 2016: (Start)

%F a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4) for n>3.

%F G.f.: (1-3*x+6*x^2-5*x^3) / ((1-x)^2*(1-2*x)^2).

%F (End)

%t LinearRecurrence[{6,-13,12,-4},{1,3,11,34},40] (* _Harvey P. Dale_, Jul 21 2024 *)

%o (PARI) Vec((1-3*x+6*x^2-5*x^3)/((1-x)^2*(1-2*x)^2) + O(x^40)) \\ _Colin Barker_, Feb 20 2016

%K nonn,easy

%O 0,2

%A _Clark Kimberling_