The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036517 Smallest triangular number containing exactly n 0's. 11
0, 300, 20100, 300700, 2001000, 50005000, 200010000, 5000050000, 20000100000, 500000500000, 2000001000000, 50000005000000, 200000010000000, 5000000050000000, 20000000100000000, 500000000500000000, 2000000001000000000, 50000000005000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = A000217(A048355(n)).
From Colin Barker, Mar 25 2020: (Start)
G.f.: 100*x^2*(3 + 201*x + 2677*x^2 - 2100*x^3 + 172280*x^4 - 1998000*x^6) / ((1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)).
a(n) = 110*a(n-2) - 1000*a(n-4) for n>6.
(End)
MATHEMATICA
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 0];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
LinearRecurrence[{0, 110, 0, -1000}, {0, 300, 20100, 300700, 2001000, 50005000, 200010000, 5000050000}, 30] (* Harvey P. Dale, Jul 31 2021 *)
PROG
(PARI) concat(0, Vec(100*x^2*(3 + 201*x + 2677*x^2 - 2100*x^3 + 172280*x^4 - 1998000*x^6) / ((1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)) + O(x^20))) \\ Colin Barker, Mar 25 2020
CROSSREFS
Sequence in context: A234406 A092715 A241943 * A223350 A190880 A063935
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 13:31 EDT 2024. Contains 372940 sequences. (Running on oeis4.)