login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036491
Transformation of A036490: 5^a*7^b*11^c -> 5^a*7^floor((b+2)/2)*11^c.
3
5, 7, 11, 25, 35, 49, 55, 77, 121, 125, 175, 245, 275, 49, 385, 539, 605, 625, 847, 875, 1225, 1331, 1375, 245, 1925, 343, 2695, 3025, 3125, 539, 4235, 4375, 5929, 6125, 6655, 6875, 1225, 9317, 9625, 1715, 13475, 14641, 15125, 15625, 343, 2695, 21175
OFFSET
1,1
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 160.
LINKS
MATHEMATICA
f[pp_(*primes*), max_(*maximum term*)] := Module[{a, aa, k, iter}, k = Length[pp]; aa = Array[a, k]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; A036490 = f[{5, 7, 11}, 2*10^14] // Rest; a[n_] := (a0 = A036490[[n]]; b = Max[1, IntegerExponent[a0, 7]]; 7^(Floor[(b+2)/2]-b) * a0); Table[a[n], {n, 1, Length[A036490]}]; (* Jean-François Alcover, Sep 19 2012, updated Nov 12 2016 *)
PROG
(Haskell)
a036491 n = f z z where
f x y | x `mod` 2401 == 0 = f (x `div` 49) (y `div` 7)
| x `mod` 343 == 0 = y `div` 7
| otherwise = y
z = a036490 n
-- Reinhard Zumkeller, Feb 19 2013
CROSSREFS
Sequence in context: A249735 A218394 A067289 * A036490 A106330 A057247
KEYWORD
nonn,easy,look
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Feb 19 2013
STATUS
approved