login
Maximum size of smallest square when a square of side n is tiled with integer-sided squares.
0

%I #16 May 02 2024 04:29:21

%S 1,1,2,1,3,1,4,3,5,2,6,2,7,5,8,2,9,3,10,7,11,4,12,5,13,9,14,5,15,5,16,

%T 11,17,7,18,7,19,13,20,6,21,7,22,15,23,7,24,9,25,17,26,8,27,11,28,19,

%U 29,9,30,10,31,21,32,13,33,10,34,23,35,11,36,11,37,25,38,14,39,13,40

%N Maximum size of smallest square when a square of side n is tiled with integer-sided squares.

%D J.-P. Delahaye, Les inattendus mathématiques, pp. 94 Belin-Pour la Science Paris 2004.

%H E. J. Friedman, <a href="https://erich-friedman.github.io/mathmagic/1298.html">Integer Square Tilings</a>

%e a(11)=2 since an 11 X 11 square can be tiled with integer squares of side at least 2 (one 6 X 6, one 5 X 5, four 3 X 3's and six 2 X 2's).

%Y Cf. A036444.

%K hard,nonn

%O 2,3

%A _Erich Friedman_