Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 05 2021 18:24:24
%S 4,5,4,4,4,3,4,3,4,3,3,3,3,3,3,3,3,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N Integer-sided squares, no more than a(n) of any size, can tile the square with side n.
%C Eves (2001) illustrates that a(175) = 1. - _Alonso del Arte_, Jun 17 2013
%D Howard Eves, Mathematical Reminiscences. Mathematical Association of America (2001) p. 78 Fig. 7.
%H Erich J. Friedman, <a href="https://erich-friedman.github.io/mathmagic/1298.html">Integer Square Tilings</a>
%e a(7) = 3 since any tiling of a 7 X 7 square with integer squares has at least 3 of the same size.
%Y Cf. A036444.
%K hard,nonn
%O 2,1
%A _Erich Friedman_