login
a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.
6

%I #37 Jun 25 2022 21:42:52

%S 2,4,6,9,12,15,20,25,30,35,42,49,56,63,70,77,88,99,110,121,132,143,

%T 156,169,182,195,208,221,238,255,272,289,306,323,342,361,380,399,418,

%U 437,460,483,506,529,552,575,598,621,644,667,696,725,754,783,812,841,870

%N a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.

%C a(n) satisfies the following inequality: (1/4)*(n^2 + 3*n + 1) <= a(n) <= (1/4)*(n+2)^2. [Corrected by _M. F. Hasler_, Apr 08 2015]

%C The present sequence is the special case a(n) = a(2,n) with a more general a(m, n) := a(m, n-1) + gpf(a(m, n-1)), a(m, 1) := m, where gpf(x) := "greatest prime factor of x" = A006530(x). Also a(a(r,k), n) = a(r,n+k-1), for all n,k in N\{0} and all r in N\{0,1}; a(prime(k), n) = a(prime(i), n + prime(k) - prime(i)), for all k,i,n in N\{0}, with k >= i, n >= prime(k-1) and with prime(x) := x-th prime.

%C Essentially the same as A076271 and A180107, cf. formula.

%H T. D. Noe, <a href="/A036441/b036441.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = p(m)*(n+2-p(m)), where p(k) is the k-th prime and m is the smallest index such that n+2 <= p(m) + p(m+1). - _Max Alekseyev_, Oct 21 2008

%F a(n) = A076271(n+1) = A180107(n+2). - _M. F. Hasler_, Apr 08 2015

%F a(n+1) = A070229(a(n)). - _Reinhard Zumkeller_, Nov 07 2015

%e a(2,2) = 4 because 2 + gpf(2) = 2 + 2 = 4;

%e a(2,3) = 6 because 4 + gpf(4) = 4 + 2 = 6.

%t f[n_]:=Last[First/@FactorInteger[n]];Join[{a=2},Table[a+=f[a],{n,2,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2011*)

%t NestList[#+FactorInteger[#][[-1,1]]&,2,60] (* _Harvey P. Dale_, Dec 02 2012 *)

%o (Haskell)

%o a036441 n = a036441_list !! (n-1)

%o a036441_list = tail a076271_list

%o -- _Reinhard Zumkeller_, Nov 08 2015, Nov 14 2011

%o (PARI) a(n)=(n+2-if(n\2+1<(p=nextprime(n\2+1))&&n+1<p+n=precprime(p-1),p=n,p))*p \\ _M. F. Hasler_, Apr 08 2015

%Y Cf. A006530. See A076271 and A180107 for other versions.

%Y Cf. A001043, A070229.

%Y Cf. A123581.

%Y Partial sums of A076973.

%K eigen,nice,nonn

%O 1,1

%A Frederick Magata (frederick.magata(AT)uni-muenster.de)

%E Better description from _Reinhard Zumkeller_, Feb 04, 2002

%E Edited by _M. F. Hasler_, Apr 08 2015