login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036411
9-gonal square numbers.
6
1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561, 4835857349623374369, 571178264921393749929, 4342594514813297471521
OFFSET
1,2
COMMENTS
From Ant King, Nov 17 2011: (Start)
lim_{n -> infinity} a(2n+1)/a(2n) = 1/625 * (36913 + 9864 * sqrt(14));
lim_{n -> infinity} a(2n)/a(2n-1) = 1/625 * (2417 + 624 * sqrt(14)).
(End)
LINKS
Eric Weisstein's World of Mathematics, Nonagonal Square Number.
FORMULA
O.g.f. f(z) = 1 + 9*z + ... = ((1 + 8*z + 182*z^2 + 8*z^3 + z^4)/((1-z)*(1 - 898*z^2 + z^4))). With the first values, for n > 0: a(n+5) = a(n+4) + 898*a(n+3) - 898*a(n+2) - a(n+1) + a(n). On every bisection modulo 2: a(n+2) = 30*a(n+1) - a(n) + 200. On every bisection modulo 2: a(n+1) = 449*a(n) + 100 + 60*sqrt(56*a(n)^2 + 25*a(n)). a(n) = -25/112 + (11/28 + (11/112)*sqrt(14))*(15 + 4*sqrt(14))^n + (11/28 - (11/112)*sqrt(14))*(15 - 4*sqrt(14))^n + (7/32 - (1/16)*sqrt(14))*(-15 + 4*sqrt(14))^n + (7/32 + (1/16)*sqrt(14))*(-15 - 4*sqrt(14))^n. - Richard Choulet, May 08 2009
a(n) = 898 * a(n-2) - a(n-4) + 200. - Ant King, Nov 17 2011
MAPLE
a(0):=1:a(1):=9:a(2):=1089:a(3):=8281: a(4):=978121:for n from 0 to 20 do a(n+5):=a(n+4)+898*a(n+3)-898*a(n+2)-a(n+1)+a(n):od:seq(a(n), n=0..20); # Richard Choulet, May 08 2009
MATHEMATICA
LinearRecurrence[ {1, 898, - 898, - 1, 1 }, { 1, 9, 1089, 8281, 978121 }, 16] (* Ant King, Nov 17 2011 *)
PROG
(Magma) I:=[1, 9, 1089, 8281]; [n le 4 select I[n] else 898*Self(n-2)-Self(n-4)+200: n in [1..20]]; // Vincenzo Librandi, Nov 18 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)
EXTENSIONS
More terms from Eric W. Weisstein
More terms from Richard Choulet, May 08 2009
STATUS
approved