login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers whose prime factors contain no digits other than 3 and 7.
2

%I #30 Sep 08 2022 08:44:52

%S 9,21,27,49,63,81,111,147,189,219,243,259,333,343,441,511,567,657,729,

%T 777,999,1011,1029,1119,1323,1369,1533,1701,1813,1971,2187,2199,2319,

%U 2331,2359,2401,2611,2701,2997,3033,3087,3357,3577,3969,4107,4599,5103

%N Composite numbers whose prime factors contain no digits other than 3 and 7.

%C All terms are a product of at least two terms of A020463. - _David A. Corneth_, Oct 09 2020

%H David A. Corneth, <a href="/A036316/b036316.txt">Table of n, a(n) for n = 1..10000</a> (first 800 terms from Vincenzo Librandi)

%H <a href="/index/Pri#prime_factors">Index entries for sequences related to prime factors</a>.

%F Sum_{n>=1} 1/a(n) = Product_{p in A020463} (p/(p - 1)) - Sum_{p in A020463} 1/p - 1 = 0.3143000293... . - _Amiram Eldar_, May 22 2022

%t dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {3}||d == {7}||d == {3, 7})]; Select[Range[6000], dpfQ] (* _Vincenzo Librandi_, Aug 25 2013 *)

%o (Magma) [n: n in [9..6000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [3,7]}]; // _Bruno Berselli_, Aug 26 2013

%Y Cf. A003594, A020463, A036302-A036325.

%K nonn,easy,base

%O 1,1

%A _Patrick De Geest_, Dec 15 1998