login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, ...(2n-1)].
4

%I #63 Sep 08 2022 08:44:52

%S 1,3,16,115,1051,11676,152839,2304261,39325276,749484505,15778499881,

%T 363654981768,9107153044081,246256787171955,7150553981030776,

%U 221913430199126011,7330293750552189139,256782194699525745876,9508271497633004786551,371079370602386712421365

%N Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, ...(2n-1)].

%C Denominators of convergents to coth(1) = 1.313035... = A073747.

%C Convergents: 1/1, 4/3, 21/16, 151/115, ... - _Michael Somos_, Sep 27 2017

%H Robert Israel, <a href="/A036244/b036244.txt">Table of n, a(n) for n = 1..369</a>

%F a(n) = a(n-1)*(2*n-1) + a(n-2); a(0) = 0, a(1) = 1.

%F E.g.f.: sinh(1-(1-2*x)^(1/2))/(1-2*x)^(1/2). - _Vladeta Jovovic_, Jan 30 2004

%F E.g.f.: cosh(1-(1-2*x)^(1/2))/(1-2*x) + sinh(1-(1-2*x)^(1/2))/((1-2*x)^(3/2)).

%F E.g.f. G(0)/(1-2*x) where G(k)= 1 + 2*x/((2*k+1)*(1-2*x+sqrt(1-2*x))+(2*k+1)*(4*x^2-2*x)/(-1+2*x+sqrt(1-2*x) + (2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Jul 01 2012

%F a(n) = Sum_{k=0..floor((n-1)/2)} 2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-1/2,k+1/2). Cf. A058798. - _Peter Bala_, Aug 01 2013

%F a(n) ~ (exp(2)-1)*2^(n-1/2)*n^n/exp(n+1). - _Vaclav Kotesovec_, Oct 05 2013

%F a(n) = A001147(n)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1) for n >= 2. - _Peter Luschny_, Sep 11 2014

%F a(n) = i*(BesselK[1/2,1]*BesselI[n+1/2,-1] - BesselI[1/2,-1]*BesselK[n+1/2,1]) for n>=0 (where a(0) = 0). - _G. C. Greubel_, Apr 18 2015

%F a(n) = A025164(-1-n) for all n in Z. - _Michael Somos_, Sep 27 2017

%e G.f. = x + 3*x^2 + 16*x^3 + 115*x^4 + 1051*x^5 + 11676*x^6 + 152839*x^7 + ...

%p seq(denom(numtheory:-cfrac([seq(2*i-1,i=1..n)])),n=1..50); # _Robert Israel_, Apr 19 2015

%t Rest[CoefficientList[Series[(E^(1-(1-2*x)^(1/2))/2 - E^(-1+(1-2*x)^(1/2))/2) / (1-2*x)^(1/2), {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Oct 05 2013 *)

%t a[ n_ ] := a[n] =a[n-2]+(2 n-1) a[n-1]; a[0] := 0; a[1] := 1. RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n-1)a[n-1]}, a, {n, 20}] (* _G. C. Greubel_,Apr 23 2015 *)

%t a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ 1/2, -1] BesselK[n + 1/2, 1]) I // FunctionExpand // Simplify; (* _Michael Somos_, Sep 27 2017 *)

%t Table[FromContinuedFraction[Range[1,2n+1,2]],{n,0,20}]//Denominator (* _Harvey P. Dale_, May 06 2018 *)

%t Convergents[Coth[1], 20] // Denominator (* _Jean-François Alcover_, Jun 15 2019 *)

%o (Sage)

%o def A036244(n):

%o if n == 1: return 1

%o return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1)/sqrt(pi)

%o [round(A036244(n).n(100)) for n in (1..20)] # _Peter Luschny_, Sep 11 2014

%o (Magma) I:=[1,3]; [n le 2 select I[n] else (2*n-1)*Self(n-1)+Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Apr 19 2015

%Y Cf. A001040, A001053, A073747.

%Y Numerators are sequence A025164. A058798.

%K nonn,easy,frac

%O 1,2

%A _Jeff Burch_

%E More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001

%E More terms from _Benoit Cloitre_, Dec 20 2002

%E More terms from _Vladeta Jovovic_, Jan 30 2004