login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n mod 101.
3

%I #33 Sep 08 2022 08:44:52

%S 1,2,4,8,16,32,64,27,54,7,14,28,56,11,22,44,88,75,49,98,95,89,77,53,5,

%T 10,20,40,80,59,17,34,68,35,70,39,78,55,9,18,36,72,43,86,71,41,82,63,

%U 25,50,100,99,97,93,85,69,37

%N a(n) = 2^n mod 101.

%D I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

%H G. C. Greubel, <a href="/A036138/b036138.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_51">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).

%F From _G. C. Greubel_, Oct 17 2018: (Start)

%F a(n) = a(n-1) - a(n-50) + a(n-51).

%F a(n+100) = a(n). (End)

%p [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];

%t PowerMod[2,Range[0,60],101] (* _Harvey P. Dale_, Mar 19 2013 *)

%o (PARI) a(n)=lift(Mod(2,101)^n) \\ _Charles R Greathouse IV_, Mar 22 2016

%o (Magma) [Modexp(2, n, 101): n in [0..100]]; // _G. C. Greubel_, Oct 18 2018

%o (GAP) a:=List([0..60],n->PowerMod(2,n,101));; Print(a); # _Muniru A Asiru_, Jan 26 2019

%Y Cf. A000079 (2^n).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_