login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n mod 79.
3

%I #27 Feb 21 2024 18:07:03

%S 1,3,9,27,2,6,18,54,4,12,36,29,8,24,72,58,16,48,65,37,32,17,51,74,64,

%T 34,23,69,49,68,46,59,19,57,13,39,38,35,26,78,76,70,52,77,73,61,25,75,

%U 67,43,50,71,55,7,21,63,31,14

%N a(n) = 3^n mod 79.

%C Because a(39) = 78, the Legendre symbol (3/79) = -1, meaning that 3 is not a quadratic residue of 79. Furthermore, it means that 3 is prime in Z[sqrt(79)]. - _Alonso del Arte_, Oct 01 2012

%D I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

%H G. C. Greubel, <a href="/A036134/b036134.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_40">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).

%F From _G. C. Greubel_, Oct 17 2018: (Start)

%F a(n) = a(n-1) - a(n-39) + a(n-40).

%F a(n+78) = a(n). (End)

%e a(4) = 2 because 3^4 = 81 and 81 - 79 = 2.

%p [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];

%t Table[Mod[3^n, 79], {n, 0, 60}] (* _Alonso del Arte_, Oct 01 2012 *)

%t PowerMod[3,Range[0,100],79] (* _Harvey P. Dale_, Feb 21 2024 *)

%o (PARI) a(n)=lift(Mod(3,79)^n) \\ _Charles R Greathouse IV_, Mar 22 2016

%o (Magma) [Modexp(3, n, 79): n in [0..100]]; // _G. C. Greubel_, Oct 17 2018

%o (Python) for n in range(0, 100): print(int(pow(3, n, 79)), end=' ') # _Stefano Spezia_, Oct 17 2018

%o (GAP) List([0..60],n->PowerMod(3,n,79)); # _Muniru A Asiru_, Oct 17 2018

%Y Cf. A000244 (3^n).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_