login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7^n mod 71.
2

%I #20 Sep 08 2022 08:44:52

%S 1,7,49,59,58,51,2,14,27,47,45,31,4,28,54,23,19,62,8,56,37,46,38,53,

%T 16,41,3,21,5,35,32,11,6,42,10,70,64,22,12,13,20,69,57,44,24,26,40,67,

%U 43,17,48,52,9,63,15,34,25,33

%N a(n) = 7^n mod 71.

%D I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

%H G. C. Greubel, <a href="/A036132/b036132.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).

%F a(n) = a(n+70). - _R. J. Mathar_, Jun 04 2016

%F a(n) = a(n-1) - a(n-35) + a(n-36). - _G. C. Greubel_, Oct 17 2018

%p [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];

%t PowerMod[7, Range[0, 100], 71] (* _G. C. Greubel_, Oct 17 2018 *)

%o (PARI) a(n)=lift(Mod(7,71)^n) \\ _Charles R Greathouse IV_, Mar 22 2016

%o (Magma) [Modexp(7, n, 71): n in [0..100]]; // _G. C. Greubel_, Oct 17 2018

%o (Python) for n in range(0, 100): print(int(pow(7, n, 71)), end=' ') # _Stefano Spezia_, Oct 17 2018

%o (GAP) List([0..60],n->PowerMod(7,n,71)); # _Muniru A Asiru_, Oct 17 2018

%Y Cf. A000420 (7^n).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_