Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 14 2023 05:37:29
%S 1,2,4,8,3,6,12,11,9,5,10,7,1,2,4,8,3,6,12,11,9,5,10,7,1,2,4,8,3,6,12,
%T 11,9,5,10,7,1,2,4,8,3,6,12,11,9,5,10,7,1,2,4,8,3,6,12,11,9,5,10,7,1,
%U 2,4,8,3,6,12,11,9,5,10,7
%N a(n) = 2^n mod 13.
%C The sequence is 12-periodic.
%D I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
%H G. C. Greubel, <a href="/A036118/b036118.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,-1,1).
%F a(n) = 13/2 + (-5/3 - (2/3)*sqrt(3))*cos(Pi*n/6) + (-1/3 - sqrt(3))*sin(Pi*n/6) - (13/6)*cos(Pi*n/2) - (13/6)*sin(Pi*n/2) + (-5/3 + (2/3)*sqrt(3))*cos(5*Pi*n/6) + (sqrt(3) - 1/3)*sin(5*Pi*n/6). - _Richard Choulet_, Dec 12 2008
%F a(n) = a(n-1) - a(n-6) + a(n-7). - _R. J. Mathar_, Apr 13 2010
%F G.f.: (1 + x + 2*x^2 + 4*x^3 - 5*x^4 + 3*x^5 + 7*x^6)/ ((1-x) * (x^2+1) * (x^4 - x^2 + 1)). - _R. J. Mathar_, Apr 13 2010
%F a(n) = 13 - a(n+6) = a(n+12) for all n in Z. - _Michael Somos_, Oct 17 2018
%p [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
%t PowerMod[2, Range[0, 70], 13] (* _Wesley Ivan Hurt_, Nov 20 2014 *)
%o (Sage) [power_mod(2,n,13) for n in range(0,72)] # _Zerinvary Lajos_, Nov 03 2009
%o (PARI) a(n)=2^n%13 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (Magma) [2^n mod 13: n in [0..100]]; // _G. C. Greubel_, Oct 16 2018
%o (GAP) List([0..95],n->PowerMod(2,n,13)); # _Muniru A Asiru_, Jan 31 2019
%Y Cf. A008831.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_