login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036046
Product of the lengths of the cycle types of the permutation created by duality and reversal on the partitions of n.
1
1, 1, 1, 1, 1, 1, 2, 6, 16, 14, 34, 48, 8448, 4020, 9180, 6272, 125424, 846000, 119448, 24501600, 188089566720, 2828352384, 132167533680, 17821427400000, 459922036392000, 4085092227635200, 503568419468083200
OFFSET
0,7
COMMENTS
I.e. the permutation on the partitions of n which maps the k-th partition in Abramowitz and Stegun order to the k-th partition in Mathematica order. - Franklin T. Adams-Watters, Jun 14 2006
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
EXAMPLE
a(7) = 6 = order of (1,2,3,5,4,6,8,9,7,10,12,11,13,14,15) = order of (4,5) (7,8,9) (11,12)
PROG
(PARI)
Dual(v)={my(u=vectorsmall(v[1]), k=0); forstep(i=#u, 1, -1, while(k<#v&&v[k+1]>=i, k++); u[i]=k); u}
OrderCycs(v)={my(t=vector(#v), L=List()); for(i=1, #v, my(c=0, j=i); while(!t[j], t[j]=1; j=v[j]; c++); if(c, listput(L, c))); Vec(L)}
a(n)={my(u=vecsort([Vecsmall(Vecrev(p)) | p<-partitions(n)])); my(v=vector(#u, i, vecsearch(u, Dual(u[#u+1-i])))); vecprod(Set(OrderCycs(v)))} \\ Andrew Howroyd, Sep 17 2019
(PARI) \\ alternate program, see above for OrderCycs.
a(n)={my(v=vecsort([Vecsmall(Vecrev(p)) | p<-partitions(n)], , 1+4)); vecprod(Set(OrderCycs(v)))} \\ Andrew Howroyd, Sep 17 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Name changed to agree with data and a(0) = 1 prepended by Andrew Howroyd, Sep 17 2019
STATUS
approved