login
A036024
Number of partitions of n into parts not of form 4k+2, 20k, 20k+1 or 20k-1. Also number of partitions in which no odd part is repeated, with no part of size less than or equal to 2 and where differences between parts at distance 4 are greater than 1 when the smallest part is odd and greater than 2 when the smallest part is even.
0
0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 7, 7, 8, 12, 15, 16, 19, 24, 30, 34, 39, 49, 60, 67, 77, 95, 112, 127, 147, 175, 206, 234, 267, 315, 367, 415, 474, 553, 637, 720, 820, 945, 1082, 1223, 1384, 1585, 1807, 2032, 2294, 2612, 2957, 3321, 3738, 4229, 4770, 5344
OFFSET
1,7
COMMENTS
Case k=5,i=1 of Gordon/Goellnitz/Andrews Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/5)) * sin(Pi/20) / (10^(3/4) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(4*k - 2))*(1 - x^(20*k))*(1 - x^(20*k+1-20))*(1 - x^(20*k- 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A260460 A000025 A036020 * A036029 A181530 A035362
KEYWORD
nonn,easy
STATUS
approved