%I
%S 0,1,1,2,2,4,4,7,8,11,13,19,22,30,36,47,56,73,86,110,131,163,194,241,
%T 284,348,412,499,588,709,832,996,1168,1387,1622,1919,2235,2631,3060,
%U 3584,4156,4852,5610,6525,7530,8724,10044,11607,13328,15355,17600
%N Number of partitions in parts not of the form 11k, 11k+1 or 11k1. Also number of partitions with no part of size 1 and differences between parts at distance 4 are greater than 1.
%C Case k=5,i=1 of Gordon Theorem.
%D G. E. Andrews, The Theory of Partitions, AddisonWesley, 1976, p. 109.
%F a(n) ~ sqrt(2) * sin(Pi/11) * exp(4*Pi*sqrt(n/33)) / (3^(1/4) * 11^(3/4) * n^(3/4)).  _Vaclav Kotesovec_, Nov 21 2015
%t nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1  x^(11*k2)) * (1  x^(11*k3)) * (1  x^(11*k4)) * (1  x^(11*k5)) * (1  x^(11*k6)) * (1  x^(11*k7)) * (1  x^(11*k8)) * (1  x^(11*k9)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Nov 21 2015 *)
%K nonn,easy
%O 1,4
%A _Olivier GĂ©rard_
