The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035920 Coordination sequence for diamond structure D^+_88. (Edges defined by l_1 norm = 1.) 1

%I

%S 1,0,15488,0,39990016,0,41333677440,0,22916557452800,0,

%T 7919942966638208,0,1870534029816486144,0,321315959969540069248,0,

%U 41994780120899506334720,0,4321124706193758340042880,0,359578487180206655473139456,0,24728329402573005235848884608,0,1430744078752131145758438498816,0

%N Coordination sequence for diamond structure D^+_88. (Edges defined by l_1 norm = 1.)

%D J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

%H Georg Fischer, <a href="/A035920/b035920.txt">Table of n, a(n) for n = 0..200</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%p f := proc(m) local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end; where n=88.

%K nonn

%O 0,3

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 27 1998

%E Zeroes inserted by _Georg Fischer_, Jul 26 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)