Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 07 2023 16:26:14
%S 1,0,4232,0,2987792,0,846141848,0,128975126048,0,12312430500520,0,
%T 808072815510832,0,38851092934042552,0,1433080081936088128,0,
%U 42010353222033261768,0,1006338265202317013840,0,20147944043360020434392,35184372088832,343501353331500571867744,38034306228027392
%N Coordination sequence for diamond structure D^+_46. (Edges defined by l_1 norm = 1.)
%H Ray Chandler, <a href="/A035899/b035899.txt">Table of n, a(n) for n = 0..1000</a> (first 200 terms from Georg Fischer)
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_92">Index entries for linear recurrences with constant coefficients</a>, signature (0, 46, 0, -1035, 0, 15180, 0, -163185, 0, 1370754, 0, -9366819, 0, 53524680, 0, -260932815, 0, 1101716330, 0, -4076350421, 0, 13340783196, 0, -38910617655, 0, 101766230790, 0, -239877544005, 0, 511738760544, 0, -991493848554, 0, 1749695026860, 0, -2818953098830, 0, 4154246671960, 0, -5608233007146, 0, 6943526580276, 0, -7890371113950, 0, 8233430727600, 0, -7890371113950, 0, 6943526580276, 0, -5608233007146, 0, 4154246671960, 0, -2818953098830, 0, 1749695026860, 0, -991493848554, 0, 511738760544, 0, -239877544005, 0, 101766230790, 0, -38910617655, 0, 13340783196, 0, -4076350421, 0, 1101716330, 0, -260932815, 0, 53524680, 0, -9366819, 0, 1370754, 0, -163185, 0, 15180, 0, -1035, 0, 46, 0, -1).
%p f := proc(m) local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end; where n=46.
%K nonn
%O 0,3
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 27 1998
%E Zeroes inserted by _Georg Fischer_, Jul 26 2020