%I #9 Sep 05 2023 15:08:08
%S 1,60,1800,36020,541200,6516012,65520920,566262180,4296107040,
%T 29081139740,177923724072,994286700180,5119703270960,24470719227660,
%U 109262828065080,458260342666116,1814109445277760,6807471232021500
%N Coordination sequence for lattice D*_30 (with edges defined by l_1 norm = 1).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (30, -435, 4060, -27405, 142506, -593775, 2035800, -5852925, 14307150, -30045015, 54627300, -86493225, 119759850, -145422675, 155117520, -145422675, 119759850, -86493225, 54627300, -30045015, 14307150, -5852925, 2035800, -593775, 142506, -27405, 4060, -435, 30, -1).
%F a(m)=add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1); with n=30.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, J. Serra-Sagrista (jserra(AT)ccd.uab.es)