login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coordination sequence for C_45 lattice.
1

%I #22 Aug 19 2018 08:19:40

%S 1,4050,2736450,741759570,108242937090,9895463694162,622155720985410,

%T 28667877399006930,1013960660749554690,28517022732422789330,

%U 655766098851343900482,12611613545459896364370,206678785994044883684610

%N Coordination sequence for C_45 lattice.

%H Seiichi Manyama, <a href="/A035782/b035782.txt">Table of n, a(n) for n = 0..10000</a>

%H R. Bacher, P. de la Harpe and B. Venkov, <a href="http://dx.doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%F a(n) = [x^(2n)] ((1+x)/(1-x))^45.

%p seq(coeff(series(((1+x)/(1-x))^45, x,n+1),x,n),n=0..30,2); # _Muniru A Asiru_, Aug 12 2018

%Y Cf. A035740.

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998